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Predictive Accuracy as an
Achievable Goal of Science
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University of Wisconsin-Madison

What has science actually achieved? A theory of achievement should (1) define what
has been achieved, (2) describe the means or methods used in science, and (3) explain
how such methods lead to such achievements. Predictive accuracy is one truth-related
achievement of science, and there is an explanation of why common scientific practices
(of trading off simplicity and fit) tend to increase predictive accuracy. Akaike’s expla-
nation for the success of AIC is limited to interpolative predictive accuracy. But therein
lies the strength of the general framework, for it also provides a clear formulation of
many open problems of research.

1. The Problem of Scientific Achievement. I wish that science could obtain
the truth, the whole truth, and nothing but the truth. It is one thing to
postulate a goal for science and quite another to say that science is capable
of achieving that goal. Philosophy of science should focus more on what
science is capable of achieving, and not what philosophers or scientists
desire on its behalf.

Realists say the truth about the world is the ultimate goal of science,
but most realists also agree that every theory in the history of science is
false. Popper 1963 clearly understood the difference between goals that
are unreached and the actual truth-related achievement of science, which
he defined in terms of verisimilitude (closeness-to-the-truth). Unfortu-
nately, Popper’s definition did not work, and there are many ways to
define verisimilitude (see Niiniluoto 1998 for a recent survey).

Van Fraassen (1980) complains that Truth with a capital ‘T’ is an un-
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realizable goal of science. But in its place, he says that science aims at
empirical adequacy, which he defined to hold of a theory iff all of its
observable consequences are true—past, present, and future. Yet it is
equally clear that no scientific theory to date is perfectly accurate in all of
its predictions. So, empirical adequacy (in this simple sense) is not an
achievement of science either.

Kuhn (1970) eschews all talk of truth and verisimilitude as the goal of
science and changes the subject by defining scientific progress (achieve-
ments) in terms of the consensus of the scientific community.

For any philosophy of science, it is useful to ask three questions:

1. What goal, or goals, can be achieved by science?
2. What possible or actual means, method, or criterion, can achieve

the goal?
3. What explanation is provided of how the means tends to achieve

the goal? Is there any account of the means-goal connection?

When applied to Popper, Kuhn, and van Fraassen (1980), only Popper
addresses the problem of truth-related achievements and, at best, his the-
ory is incomplete.

The aim of this essay is to describe an alternative approach, which not
only defines ‘truth-related’ achievements of science precisely, but also pro-
vides a rudimentary explanation of why standard methods in science may
lead to such achievements. Here is the theory in summary:

1. Predictive accuracy (Forster and Sober 1994) is a truth-related
achievement of science.

2. Standard methods of theory selection can be seen as approximating
a certain tradeoff between simplicity and fit (referred to as AIC)
(see Sober 2002 for a brief description).

3. A theorem in mathematical statistics called Akaike’s theorem
(Akaike 1973, 1994) shows that the application of AIC can reduce
overfitting error, which then explains (assuming that the conditions
of the theorem are approximately satisfied) why hypotheses se-
lected in this way tend to have greater predictive accuracy.

Predictive accuracy is defined in terms of the expected log-likelihood
of re-sampled data. Like truth, it is not something that we can ‘see’. Yet
Akaike’s theorem explains why AIC and predictive accuracy are con-
nected. Akaike’s theory has been explained, criticized, and defended many
times. I plan to openly recognize the limitations of Akaike’s theorem (and
to correct some misconceptions like the alleged inconsistency of AIC), and
finally demonstrate that the general framework is helpful in formulating
and analyzing outstanding problems.
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2. Many Predictive Accuracies. The first point is this: There is nothing that
precludes the possibility that there are many truth-related goals that are
simultaneously achieved in science. This even applies to the realist goal of
the ‘whole truth’ about the world. The achievability of this goal does not
imply that predictive accuracy is unachievable. So, unlike van Fraassen’s
constructive empiricism, the theory of predictive accuracy is compatible
with scientific realism.

Not only does the goal of predictive accuracy allow the achievement of
other goals, but predictive accuracy is not a single goal in the first place.
If one considers its definition carefully, for example in the context of curve-
fitting, it is clear that predictive accuracy is always relative to a domain of
prediction. Suppose we want to predict the volume of air trapped in a
J-shaped tube in the left (quantity y) on the basis of the height of the
column of mercury on the right (quantity x). We may pose the prediction
problem for x-values within the range of values tested by Boyle (ca. 1660),
or we could predict the value of y for higher values of x. Or we could
consider the prediction of volumes with negative values of x (i.e. pressures
less than atmospheric pressure). (Boyle did this experiment as well—see
Shamos 1959.) The domains of prediction in these three experiments are
different, so the goal of predictive accuracy within each domain is different
even if degrees of predictive accuracy are roughly the same.

This is philosophically important. For example, Kruse (1997) exploits
the distinction between wider and narrower domains of prediction in dis-
cussing the age-old problem of why varied evidence is more valuable than
unvaried evidence (see also Kruse 1999, 2000).

The main point of this essay is to argue for the importance of another
distinction: Interpolative predictive accuracy is defined roughly as predic-
tive accuracy within the same domain of prediction as that from which
the observed data were sampled. Extrapolative predictive accuracy is pre-
dictive accuracy in a domain outside of the interpolative domain (the in-
teresting case being when it is entirely outside).

More exactly, suppose that we define a domain of prediction as a prob-
ability distribution over values of the variable x. It may be that the dis-
tribution picks out a discrete set of x-values and gives them equal weight,
or the distribution may be an interval distribution of a range of x-values,
or it may be a Gaussian (normal) distribution with a specified mean value
and variance. When the range of the distribution lies with the range of
x-values from which the data in hand was sampled, then it is an interpo-
lative domain, and when it is outside, then it is an extrapolative domain.
This definition does not draw a sharp dividing line in all cases, but there
are cases in which the difference is clear-cut and useful.

Akaike designed AIC as a method for estimating interpolative predic-
tive accuracy. It is therefore an open question whether it succeeds as a
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means to the goal of extrapolative predictive accuracy as well. Later in
this essay, I shall present an argument to the conclusion that it does not.
While this imposes a limit on the effectiveness of AIC, it is a good illus-
tration of the usefulness of the general framework.

3. Models and Rules for Their Selection. Let a model be a set of equations,
which has adjustable parameters, plus an error distribution assigned to
the ‘dependent’ variable y (the quantity to be predicted). For example,
Boyle’s Law in the form Volume � Pressure � Constant � U is a model
in this sense if Constant is an adjustable parameter and U is Gaussian
error term that has mean zero and an adjustable variance. Models are
families of hypotheses that have precise likelihoods, in the sense that given
the particular x-values measured, each hypothesis assigns a precise prob-
ability, or probability density, to the observed y values. The adjustable
parameters are estimated from the observed data by finding the best-fitting
version of the model (defined as the one that has the highest likelihood,
i.e., makes the observations most probable). This maximum likelihood
member of the family (sometimes called the fitted model ) will assign a well
defined probability value to any new set of data. Therefore, a fitted model
has a well defined predictive accuracy in any well defined domain of pre-
diction independent of whether we know its value or not. Unfitted models
do not have well defined predictive accuracies in the sense defined.

AIC (Akaike Information Criterion) not only provides a way of esti-
mating the predictive accuracy of fitted models, but it also defines a rule
for selecting the best model.

AIC Rule: Select the fitted model that that has the greatest AIC score,

(1/N) Maximum log likelihood � k/N,

where N is the number of data and k is the number of adjustable param-
eters.

The AIC score written here differs from Akaike’s AIC by a constant
factor and is equivalent to it in the sense that a constant factor makes no
difference to the AIC ordering of the rival models. Notice that everything
mentioned in the rule is directly accessible to us. The maximum log-
likelihood is the maximum probability (or probability density in the case
of continuous quantities) of the observed data given particular members
of the model. N is the number of data, and k is the number of adjustable
parameters in the set of equations.

BIC (Bayesian Information Criterion) is derived on the basis of an idea
that originally appears in Rosenkrantz 1977. The idea is that the likelihood
of a model is the average likelihood of its members. Most members of the
model fit the model very poorly and therefore the larger and more complex
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1. This is an approximate claim. Its truth depends on what is held fixed. Clearly, with
smaller N, overfitting will increase the per datum log-likelihood, so the expected per
datum log-likelihood will decrease slightly as N increases, other things being equal. But
these details do not affect the point to be made.

the model, the more the average is watered down from its maximum value.
Schwarz (1978) went one step beyond Rosenkrantz in actually deriving a
approximate formula to quantify the effect. There are many objections to
the derivation (Forster and Sober 1994; Wasserman 2000) and the viability
of the idea behind it (Forster and Sober 1994; Forster 2000). However,
within the Akaike framework, any rule can be considered as the means to
any goal, regardless of the intent of its authors or the soundness of its
derivation.

BIC Rule: Select the fitted model that has the greatest BIC score

(1/N) Maximum log likelihood � (log N/2) k/N,

where N is the number of data and k is the number of adjustable param-
eters.

Notice that both of these rules uses the same first term. When the data
are independent, according to the model, the log-likelihood is the sum of
the log-likelihoods of each datum. Therefore the log-likelihood increases
proportionally to N, so the first term can be thought of as constant for all
values of N.1 On the other hand, the second terms in both criteria tend to
zero as N r � (this will be important later). For intermediate values of N,
BIC has a greater tendency to select simpler models.

Cross validation methods divide the N data into a calibration set and
a test set (Browne 2000). The model is then fitted to the calibration set
and then scored by its fit with the test set. There is no need to use sim-
plicity. The cross-validation score is a direct test of predictive accuracy.
This method is widely used in learning algorithms in neural networks and
machine learning. However, statisticians generally worry about its ineffi-
cient use of the data and the arbitrary division of the data. So they tend
to favor a version of cross validation known as the leave-one-out method.
In this method, each of the N data takes its turn at being the test set, and
the N scores are then averaged. The rule selects the model with the highest
average score.

Stone (1977) proves that leave-one-out cross validation is asymptoti-
cally equivalent to AIC. The reference here to ‘asymptotic’ refers to the
limit for large N, which is also a sufficient condition for Akaike’s theorem
to be true (under some weak regularity conditions). Stone’s theorem there-
fore independently verifies that AIC estimates interpolative predictive ac-
curacy, since leave-one-out cross validation is a direct estimate of this
quantity. In contrast, ordinary cross validation, with a judicious choice of
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the calibration and test sets, is a direct estimate of extrapolative predictive
accuracy. I will return to this point later.

Classical Neyman-Pearson hypothesis testing is also connected to AIC
in an interesting way, in at least some examples. Consider a test between
a simple hypothesis h � 0 and a composite hypothesis h � 0, where the
distribution of h is normal (Gaussian). The null hypothesis is h � 0, and
h � 0 is a family of alternative hypotheses. h could be the (unknown)
propensity of a coin to land heads and the test statistic (the measured
quantity) could be the frequency of heads in N tosses. h then determines
a distribution for the test statistic (the sample mean), which is approxi-
mately normal for a large number of tosses. The composite hypothesis will
fit the data at least as well as the simple hypothesis because the composite
hypothesis contains hypotheses that are arbitrarily close to the null hy-
pothesis. Now, note that a Neyman-Pearson test will reject the null
hypothesis only if the best case of the composite hypothesis does ‘signifi-
cantly’ better than the null hypothesis. Therefore Neyman-Pearson tests
trade off fit against simplicity, even though they were not designed to do so.

In the same example, AIC is equivalent to a Neyman-Pearson test with
a rejection area of 15.73% (Forster 2000, 212). The conventional Neyman-
Pearson rejection area of 5% makes it harder to reject the simple hypoth-
esis. Therefore, a conventional Neyman-Pearson test gives a greater bias
toward simple hypotheses in this example. Neyman-Pearson testing with
a 5% rejection area is between AIC and BIC in the weight it gives to
simplicity.

The last few paragraphs show that other methods of model selection
may be equivalent in the sense of selecting the same model within a large
class of examples, even though they are derived from different premises.
However, the equivalence is sufficient to show that they may function as
means to the same goals in that class of examples. The intention of the
designers of a method is irrelevant to the kind of questions asked within
the Akaike framework. Certainly, we may ask whether a criterion serves
the purpose for which it was designed. But we may also ask whether it is
an effective means to a different end. The answers to these questions are
non-trivial. It may turn out that in some circumstances, the BIC rule, or
Neyman-Pearson testing, is a more effective means of maximizing inter-
polative predictive accuracy because they give a greater weight to simplic-
ity. And in other circumstances, the opposite may be true (Forster 2000).
Moreover, the outcome of such an investigation does not answer questions
about how the criteria compare in achieving other goals. That is why the
three steps in Akaike’s methodology are so important.

4. The Alleged Inconsistency of AIC. It is a part of the folklore of statistics
that AIC is not statistically consistent, where an estimator is consistent if
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2. And there is also a question about whether consistency is necessary for an estimator
to be a good one. See Sober (1988) for an argument that it is not necessary.

and only if it converges to its goal as the number of data N r �. This is
a good example of the muddle-headedness that can result from paying
insufficient attention to goals. There is a sense in which AIC is inconsis-
tent, but a full treatment of the issue shows that it is not inconsistent in
the sense that matters.2 Here are specifics of the case.

Consider a hierarchy of nested models. For example, consider the hi-
erarchy of all n-degree polynomials, beginning with straight lines (LIN)
and parabolas (PAR) at the lower end and heading toward polynomials
with terms containing x to the power of n, for high values of n, at the
other end. The models are nested because a lower degree polynomial is a
special case of a higher degree polynomial when the coefficients of higher
degree terms are constrained to be 0. Let the true curve first appear in the
model with k* adjustable parameters. AIC is inconsistent in the sense that
the model selected by AIC overshoots k* as N r �. BIC is consistent
because it converges to k* in the same limit. However, this property of
AIC and BIC is only important if one of two conditions is met: (1) The
estimation of k* is an important goal in and of itself, or (2) a failure to
converge on k* is symptomatic of a failure to converge on the true hy-
pothesis in the model k* (since every model has a unique k, we denote the
model by k). I shall argue that neither of these conditions is met.

The number k* is the number of adjustable parameters, or dimension,
of the model in which the true hypothesis first appears in the hierarchy.
But the true hypothesis is also a member of all the models higher in the
hierarchy, since the models are nested. To make sure that this fact is not
lost in the notation, let h* denote the true hypothesis. Then h* is in k*
and in all models such that k � k*. Therefore, there is no sense in which
k* is the true dimension of h*. After all, the equation for h* does not have
adjustable parameters, only adjusted parameters. To put the point another
way, we could define a quite different hierarchy of nested models in which
h* first appears in a model of dimension different from k*. Hence, k* is
an artifact of the representation, and not something that one should be
interested in estimating.

Nor does condition (2) hold, since h* also appears in all models in the
hierarchy higher than k*, the fact that AIC overshoots k* does not exclude
the possibility that AIC converges on h* as N r �. It only shows that it
may converge on h* from a different direction. Of course, this does not
prove that AIC converges on h*. I have only argued that the fact that AIC
overshoots k* does not prove that it does not.

To see that, in fact, AIC does converge on h*, it is sufficient to note
that even a maximum likelihood method (which gives no weight to sim-
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plicity, and immediately selects the most complex model in the hierarchy)
will converge on h*. This is proven by a well known theorem in statistics
to the effect that the maximum likelihood estimation (MLE) of parameters
will converge on their true value as N r � in a truncated hierarchy. So,
truncate the hierarchy at a value of k higher than any reached by AIC. If
MLE converges on h*, then so will AIC. We have already observed that
the simplicity term gets washed out by the maximum likelihood term in
both AIC and BIC, which is to say that the criteria become indistinguish-
able from MLE in the limit. Of course, one cannot use this equivalence to
prove that they select the same value of k in the large sample limit, because
they do not. That is why the argument must also appeal to the convergence
theorem about MLE. Finally, I refer to simulations in Forster 2000, which
confirm that all of this is correct.

Therefore, the limited sense in which AIC is inconsistent, and BIC is
not, is not an argument in favor of BIC with respect to the goal of predictive
accuracy. My main purpose is not to defend AIC over BIC, but to illus-
trate how the clarity of thought demanded by the predictive accuracy
framework plays an important role in resolving the issue.

5. Three Open Problems. To prove my sincerity, I shall mention three
unresolved problems for AIC, although I hasten to add that they pose
equal problems for BIC. The first problem arises from the phenomenon
that Zucchini (2000) refers to as selection bias: If one begins with a very
large collection of rival models, then we can be fairly sure that the winning
model will have an accidentally high maximum likelihood term. It is a
kind of second order overfitting effect. The selection bias can be expected
to be less if we begin with a small set of rival models. But then we have
the problem of how to select the few models that go into this set. Perhaps
this is one of the reasons that theories are so prevalent in science, since a
background theory will constrain the set of models under consideration.
After selecting the best model from rival theories, the two winners may
play off against each other. This is one idea, and there are others (Was-
serman 2000 suggests that the Bayesian idea of model averaging may ad-
dress this problem). However, it is a fairly recent area of research and I
believe that the issue is unresolved.

The second issue is: What happens when the assumptions of Akaike’s
theorem are false? Akaike’s theorem assumes that the maximum likelihood
hypothesis, when represented as a point in parameter space, behaves as a
multivariate normal random variable under data re-sampling. This is a
condition that holds asymptotically under weak regularity conditions, and
entails all the nice theorems about maximum likelihood estimation (Cra-
mér 1946a, chaps. 32 and 33, and Cramér 1946b). As an empirical law,
the normality condition is also related to what became known in the eigh-
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teenth century as the law of errors (which states that the error of parameter
estimation is Gaussian—see Porter 1986; also Stewart 1989, chap. 3).

The question about when these assumptions hold, or otherwise, is un-
resolved in many important cases. For example, Kieseppä (1997) describes
an artificial example, which he proves violates Akaike’s theorem, and then
concludes that AIC is not a good estimate of predictive accuracy in this
case. He then argues by analogy that, because his example and the his-
torically real example of predicting planetary motions both involve similar
functional forms, that the normality condition does not apply to planetary
astronomy. But arguments by analogy are notoriously unreliable, unless
they are independently verified.

As Cramér says in the introductory preamble to his treatment of the-
orems (1946, 146, his emphasis), “Certain propositions of a mathematical
theory may, however, be tested by experience.” It is therefore relevant to
quote Cramér at length on the history of the law of errors:

Gauss and Laplace were both led to the normal function in connection
with their work on the theory of errors of observation. Laplace gave,
moreover, the first (incomplete) statement of the general theorem
studied under the name of the Central Limit Theorem . . . Under the
influence of the great works of Gauss and Laplace, it was for a long
time more or less regarded as an axiom that statistical distributions
of all kinds would approach the normal distribution as an ideal lim-
iting form, if only we could dispose of a sufficiently large number of
sufficiently accurate observations. The deviation of any random vari-
able from its mean was regarded as an “error”, subject to the “law of
errors” expressed by the normal distribution. Even if this view was
definitely exaggerated and has had to be considerably modified, it is
undeniable that, in a large number of important applications, we meet
distributions which are at least approximately normal. Such is the
case, e. g., with the distributions of errors of physical and astronomical
measurements, a great number of demographical and biological dis-
tributions, etc. (Cramér 1946a, 231, my emphasis)

It was Gauss who analyzed the method of least squares and he introduced
it as a method of inferring planetary motions. So, the law of errors has
empirical support in planetary astronomy. This does not prove that
Akaike’s theorem applies to planetary astronomy, but it does suggest that
one needs something stronger than an analogy with a contrived example
to prove that the theorem does not apply at least approximately in this
example.

Planetary astronomy is also an interesting example because it is clearly
extrapolative predictive accuracy that is at stake. Astronomers fit their
models to past data and then use the fitted models to predict future events.
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It is also an example in which there is a rich supply of observational
data, which has the following significance: The standard criteria, like AIC
and BIC, have the property that the simplicity factor k makes a negligible
difference when N is large. In that case, the criteria select the best fitting
hypothesis. Therefore, complex models will be favored when N is large.
As far as interpolation is concerned, I have already argued that this is a
good consequence. However, for the purpose of extrapolation, there is
reason to believe that it is a bad consequence (see also Muliak 2001). If
this is right, then it follows that the standard criteria, like AIC and BIC,
will fail to be an effective means to extrapolative predictive accuracy when
the number of data is large. The argument (Busemeyer and Wang 2000)
is summarized as:

1. All the standard criteria, like AIC and BIC, have the property that
simplicity makes a negligible difference when N is large.

2. Complex models will be favored when N is large.
3. Complex models are good for interpolation but bad for extrapo-

lation when N is large.

4. None of the standard criteria is a good means to extrapolative
predictive accuracy when N is large.

Simulations performed by Forster (2000) confirm that premises 2 and 3
are correct in at least some examples.

Upon reflection, the B-W argument makes sensible recommendations.
It tell us, for example, that we should not re-introduce epicycles into plan-
etary astronomy now that we have copious data and fast computers, just
because Fourier’s theorem tells us that we could fit planetary trajectories
better by this method than by using Einsteinian theory. The reason is that
the predictive accuracy of our extrapolative predictions will not improve.

On the other hand, prediction tests, or cross validation with a direction-
ality built in, as well as Whewell’s consilience of inductions (1858!), do not
use simplicity explicitly, so they are immune to the B-W argument. Indeed,
the same computer simulations show that these criteria perform better at
extrapolation. However, the effectiveness of such criteria in more general
situations is an open research problem.

6. Conclusion. While AIC is a good means to achieving the goal of inter-
polative predictive accuracy, Akaike’s real legacy is his general framework,
for it requires us to make careful distinctions. It is only by carefully defin-
ing predictive accuracy that one notes the distinction between interpolative
and extrapolative predictive accuracy, and only then does one think of
asking whether they are achieved by the same methods or by different
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methods. The limitation of AIC to interpolation is a small setback for
AIC and a major leap forward for the Akaike framework.
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